
9. A. E. Green and W. Zerna, Theoretical Elasticity, Clarendon Press, Oxford (1954). 
i0. K. F. Chernykh and I. M. Shubina, "Allowance for the compressibility of rubber," Mekhan- 

ika Elastomerov, No. 263, Kuban. Univ., Krasnodar (1978). 

ELASTOPLASTIC PROPERTIES OF MULTICOMPONENT COMPOSITES 

L. A. Saraev UDC 539.378 

Predicting the inelastic properties of materials with random discontinuities is one 
of the most important current developments in the mechanics of deformable solids. Modeling 
the macroscopic governing relations and calculating the effective characteristics of such 
media in many cases permits satisfactory estimation of the strain properties, limiting state, 
and load-carrying capacity of structural elements made of composites, powders, and other 
types of structural materials. The macroscopic behavior of multicomponent rigid-plastic and 
elastoplastic composites was examined in [I, 2] within the framework of flow theory. 

Here, we examine the use of the method of generalized singular approximation of the 
theory of random fields to describe small elastoplastic strains of composite materials with 
an arbitrary number of constituents. A similar problem was solved in a correlation approxi- 
mation in [3, 4]. 

Let a micro-inhomogeneous medium occupying a volume V bounded by the surface S be com- 
posed of n different elastoplastic constituents connected to each other with ideal adhesion~ 
The governing relations for the material of each constituent are given by the equations 

sii = 2~8(skz)eij, op~ = 3K~%v (s = l ,  2 . . . . .  n). ( 1 )  

H e r e ,  sij = ~ i J -  (t/3)6ijapp; e~j = e i l -  (i/3)~j%p; o ij, e~  a r e  c o m p o n e n t s  o f  t h e  s t r e s s  and  s t r a i n  
t e n s o r s ;  ~(ekz) i s  t h e  s h e a r  m o d u l u s  o f  p l a s t i c i t y ;  K s i s  t h e  b u l k  m o d u l u s  o f  t h e  s - t h  c o n -  
s t i t u e n t  (K s = c o n s t ) .  

The  s t r u c t u r e  o f  s u c h  a c o m p o s i t e  c a n  b e  d e s c r i b e d  by  a s e t  o f  r a n d o m  i n d i c a t o r  f u n c -  
t i o n s  o f  t h e  c o o r d i n a t e s  • u2(r) . . . . .  un(r) .  M e a n w h i l e ,  e a c h  f u n c t i o n  us(r) i s  e q u a l  t o  u n i t y  on 
t h e  s e t  o f  p o i n t s  o f  t h e  s - t h  c o n s t i t u e n t  and  i s  e q u a l  t o  z e r o  o u t s i d e  t h i s  s e t .  U s i n g  t h e s e  
f u n c t i o n s ,  we c a n  w r i t e  t h e  l o c a l  g o v e r n i n g  e q u a t i o n s  ( 1 )  i n  t h e  f o r m  

i ~ sij (r) = 2 ~ (ehl (r)) U8 (r) eij (r), avv (r) = 3 ~.~ Ksu.  (r) evp (r). ( 2 )  

All of the functions us(r) of stress and strain are presumed to be statistically uniform and 
ergodically random fields, and their mathematical expectations are replaced by the mean val- 
ues over the volumes of the constituents V s and over the total volume of the composite 

s=l V~ V 

Establishing the macroscopic governing equations and effective constants of such a com- 
posite mean determining the relation between the macrostresses <oij> and the macrostrains 
<eij>. The general form of this relation is expressed in the present case by the formula 

<%> = E~hz (<~>) <~kz> (3) 

(Ei~t(<emn>) are components of the fourth-rank tensor of the plastic moduli). Here and below, 
an asterisk denotes an effective value of a quantity. 

To derive Eqs. (3), it is necessary to statistically average the system of equations de- 
scribing the deformation of an inhomogeneous medium. This system consists of (2), the equi- 
librium equations 

aip,p(r) = 0 ( 4 )  

and  t h e  C a u c h y  f o r m u l a s  

2eij(r) = u~,~(r) + uj,i(r), ( 5 )  
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linking components of the tensor of small elastoplastic strains with components of the dis- 
placement vector ui(r). The boundary conditions for system (2), (4), (5) are the conditions 
of the absence of fluctuations of the quantities on the surface S of the volume V: /(r)---- (]>, 
r ~ S System (2), (4), (5) is stochastically nonlinear. Thus, in order to be able to use 
the methods of the theory of elasticity to establish macroscopic governing relations, the 
first equation of (2) must be linearized - after certain assumptions have been made. With 
this in mind, within each constituent, we will ignore fluctuations of the strains under the 
sign of the plastic modulus and we will adopt the approximate equality ~8(eh~) = ~s((ekz)s). With 
allowance for this equality, Eqs. (2) take the form 

slj = 2 ~, l~s (<eaz>~) u, eii, c;pv = 3 K,use~z,. (6) 

Following the method of generalized singular approximation of the theory of random field, we 

introduce the Green tensor Gik(r)= 8~r,Pv 3K+8~ r,ik ,,r = ]rl. This tensor contains undeter- 

mined quantities P and K that satisfy the inequalities 

rain {~ts (<eke>s)} <~ ~ ~ max {~t,(<ekt> s)},: 
s 8 

rain {Ks} <~ K <~ max {K,}. 
$ $ 

H e r e ,  i n  c o n t r a s t  t o  t h e  c o n s t a n t  K, t h e  v a l u e  o f  ~ in  t h e  g e n e r a l  c a s e  may depend  on t h e  
s t r a i n s  <Eks s .  S y s t e m  ( 4 ) - ( 5 )  can  be r e p l a c e d  by a s y s t e m  o f  i n t e g r a l  e q u a t i o n s  o f  e q u i -  
l i b r i u m  whose  k e r n e l s  a r e  s e c o n d  d e r i v a t i v e s  o f  t h e  Green  t e n s o r  

' ~ eij (r) = Gik, zj(r - -  ri) Zh~ (ri) dri; ( 7 )  
V 

7t 

(the primes .denote fluctuations of the quantities in the volume V). 

In order to obtain the macroscopic governing equations of the composite being examined, 
it is necessary to average Eqs. (6) over the total volume: 

<sij> = 2 c ~ .  (<eh~>~) <ei~>~; <%v> = 3 ~] c~K. <%v>. (9 )  
S = I  ~ i  

(c s -- Vs V-i are the volumetric contents of the constituents). It is evident from (9) that 
establishing the effective governing relations requires expression of the mean-volume strain 
components <eij> s through the macrostrains <eij>. These quantities are connected by the re- 
lation [I, 2] 

<e~>s = <e~> + c7 ~ <• (10)  

R e p l a c e m e n t  o f  t h e  s e c o n d  d e r i v a t i v e s  in  Eqs .  (7 )  and (8 )  by  t h e i r  s i n g u l a r  p a r t s  i n  a c c o r -  
d a n c e  w i t h  t h e  h y p o t h e s i s  o f  s i n g u l a r  a p p r o x i m a t i o n  and s u b s t i t u t i o n  o f  t h e  r e s u l t  i n t o  Eq. 
(10)  l e a d s  t o  e q u a t i o n s  f o r  t h e  c o m p o n e n t s  o f  t h e  t e n s o r  < e i j >  s 

2t~ (~ - ~) <,~> + ~<~> 
<ei~>s ---- 2p. q- 2 [Bs] (z ' 

3K (t --  ",') <epp> -~, V <~ (i 1 ) 
<epp>s ----- 3K + 3 [g,]  %, ': 

2 4--5v t t-+-v 3K--2l~ 
a~-i-5 i""'~--~ ' ~= 3 1 - - v '  'V=6Kq--2-----~" 

Transformation of Eqs. (9) by means of Eqs. (ii) makes it possible to describe the macro- 
scopic equations of elastoplastic deformation (3) for the composite with an isotropic tensor ( 2) 
of the effective plastic moduli Ei~ = ~*I~ + K*-- ~ ~* ~i~: 

<s~j> = 2~* (<skz>J <eij>, <~v> = 3K* (<~kz>~) <~vp>; 

~, . (I - ~1 ~ ~,~ (<shz>~) , 

(12) 
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(i  -- 7) q ~ %Ks 
K* K "i--~ln ' 0-- /-~K(i__-~-+yK~, ( 1 3 )  $=1 

(l  - -  a)  ~ + a~* 
<eii>s = ~ + ~ [~s] <eii>, <epp>s = (I --f + ?) K? [Ks]+ ?K* <epp>. 

Along with the macrostresses <oij> and macrostrains <sij>, the closed system of equa" 
tions of elastoplastic deformation of the composite (12)-(13) includes the components of the 
tensor <gij>s. To eliminate them from system (12)-(13), it is necessary to specify the 
form of the plastic moduli functions of each component ~s(eal) and to appropriately select 
and K. The form of the functions ~s(~kz) is assigned in accordance with the strain properties 
of the materials of the composite's constituents on the basis of experimental data. In the 
special case when all ~i, V2,.-.,~n are constants, Eqs. (12) and (13) coincide with the 
familiar results obtained from the generalized singular approximation in the theory of linear 
elasticity of micro-inhomogeneous media [5]. 

The method of participation of the constituents in the deformation of the composite de- 
pends on the choice of the undetermined quantities ~ and K. By assigning suitable values 
to ~ and K, we can obtain different models of multicomponent composites with any degree of 
connectedness of the constituents. For example, if we seek ~----~,(ehz), K----K, in general 
formulas (13), we obtain a model of a composite in which the first component plays the role 
of the binding matrix and the other components function as individual inclusions. The ex- 
pressions for these effective quantities take the form 

n 

t"t ~1 c sK s K*=K, ( ~-?I)~I,_ ?i~i ~1 = -- K,(I__yI)+y,Ks, (14) 

(l --(Xl) ~1 + Gfl~t* (~ --  ~1) K1 + ~,K* 

In the theory of elasticity, similar formulas for the effective moduli of isotropic compo- 
sites of the matrix-inclusion type show good agreement with experimental data both for elastic 
and rigid inclusions and for pores [6, 7]. 

Another type of connection between phases occurs in an inhomogeneous medium in which the 
matrix is composed of several interpenetrating components. The governing relations for such 
a composite are obtained from general formulas (12), (13) if we put the following in these 
equat ions 

tB WZ 

---- {9} ---- E csg,, K- - - -{K}- - - -ZcsK~,  m<~n. 
S : l  8=i 

In this case, the expressions for the effective quantities (13) take the form 

= 0 ' }  - A ) x  

n 
(i -- F) H, csKs 

K*={K} ] - - -F /?  ~ H = X { K } ( I - - r ) + P K J  
(15) 

(l - -  A) {~} + Ag* (t --  F) {K) + FK* 

2 4 - - 5 N  1 ~ i I + N  3{K)--2(t*} 
A - ~ i 5 i - - N '  = 3 1 - - N '  N : 6 { K } + 2 { i t } "  

The matrix of the composite whose effective characteristics are found from Eqs. (15) is com- 
posed of the first m interpenetrating components of the composite. The remaining n - m com- 
ponents are individual inclusions. In the theory of elasticity, formulas similar to (15) 
accurately describe the agreement between the elastic moduli of composites having interpene- 
trating constituents and experimental data [5, 8]. 

We will use Eqs. (14) and (15) to calculate the elastoplastic properties of certain 
micro-inhomogeneous materials. Here, sections of the tension (compression) curves of the 
constituents will be approximated by the exponential relation 

e = ~(i -- exp (--Ee/,))~ (16) 
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where E is the Young's modulus; ~ is the limiting value of stress on the given section of 
the curve (yield point); a and ~ are the tensile (compressive) stress and strain. 

We will use (14) to calculate the elastoplastic characteristics of porous media in which 
the matrix is composed of one or two constituents. Results will be obtained for different 
methods of loading. For a one-component porous medium (n = 2, ~2 = K2 = 0, c 2 = v), it fol- 
lows from (14) that ~i = ~i = i - v. For a two-component porous medium (n = 3, ~a = Ka = 0, 

c 2~ ~ c 2K 2 
c a = v), Eqs. (14) yield E1 :CI + (i --~l)~l + ~i~ 2' ~I : el + (i ~'Yl) Kl + 71K2~ cl + c2 + I - v (v is 

the volumetric content of pores). 

Let us compare the results obtained here with experimental data from the pressing of 
porous materials in an axisyn~netric mold. The connection between axial pressure p = <oI~> 
and porosity v follows from Eqs. (12), in which it is necessary to set i = j = i. Consider- 
ing that the macroscopic strains of the medium in the compression mold are connected with 
the volumetric content of pores by the relations (en) : In [(i--vo)/(i--v)], (e2~) = (ca3> : 0, we 
obtain the following equation for the pressing operation 

( 4 ) l - v ~  
p =  K * + $ ~ *  In i - -v  (17) 

(v 0 is the initial porosity of the material). In calculating curves describing the consoli- 
dation of porous media, we solved Eq. (17) numerically together with Eqs. (14) by the method 
of successive approximation. 

Figure 1 shows a theoretical curve describing the consolidation of powdered electrolytic 
nickel in a symmetrical mold. The curve was constructed from Eqs. (14) and (17) for a one- 
component porous material. The points denote experimental values obtained without removal 
of the work-hardening which takes place. These values were obtained in [9]. Here v 0 = 0.53. 

Figure 2 compares theoretical curves of the consolidation of two-component porous media 
calculated from Eqs. (14) and (17) (dashed lines) with experimental curves of the pressing 
of a mixture of powders of iron and glass (solid lines). The latter curves were obtained in 
[i0]. The numbers next to the curves denote the volumetric contents of glass, v 0 = 0.55. 

Let us examine the elastoplastic behavior of a one-component porous medium under condi- 
tions of uniaxial tension. In this case, Eq. (12) takes the form 

K*~* 
<Oll > = 9 3g* + ~ *  <S11>' <E22> = <e$3>' <E22> = -- ~$ <El1>~ (18) 

where v* = ~*((ehz)s) is the elastoplastic Poisson's ratio of the porous material. Numerical 
estimates obtained with Eqs. (14), (16), and (18) were used to obtain the theoretical depen- 
dence of the Poisson's ratio on the axial strain. 

Figure 3 compares this dependence (solid line) with experimental data from [Ii] (points) 
obtained by measurement of the Poisson's ratio of porous reduced iron that was sintered for 2 
h in hydrogen at 1200oc. 

We will use Eqs. (15) to calculate the elastoplastic behavior of a composite formed by 
two interpenetrating constituents. The effective characteristics of this medium are obtained 
from the constituents with m = n = 2: 

{~ } = (~t) -= c1~1 + c 2 ~ ,  { K  } =- ( K )  --- c l K  1 + c2K,, , 

N = (v) = elY, + c2v2- 
(19) 
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TABLE 1 

Materials of 
the compo- 
nents 

Nickel 
Copper 
Iron 
Tungsten 
Glass 

E, MPa 

204 000 
123 480 
205 926 
404 740 

78 000 

0,28 
0,33 
0,28 
0,28 
0,25 

�9 , MPa 

140 
69 

200 
75O 

To construct the theoretical curve of uniaxial tension of the composite, we solved Eqs. (15), 
(16), (18), and (19) numerically by the method of successive approximations. 

Figure 4 compares theoretical (dashed lines) and experimental (solid lines) tension 
curves of specimens obtained by impregnation of a sintered framework of powdered tungsten 
with a copper melt. The numbers next to the curves denote the volumetric content of tung- 
sten [8]. 

Table i shows values of the mechanical constants of the metals used in the calculations. 
The values of the constants were taken from [8-12]. 

Figure 5 shows approximations of sections of the stress-strain curves of the metals used 
in the numerical calculations. 

If we put ~ = p* and K = K* in Eqs. (13), we obtain the following equations for the 
effective quantities 

2 =i, c,x, * + =* (~, - F*)  ~-~ K* + ~* (K,  - -  K*)  = 1 ,  
$ ~ 1  S ~ I  x 

<eij>s = ~ ,  + a ,  (~8--  ~*) <etj>, <evv>s = K* + ?* (K s - -  K*) ! 

w h i c h  i n  t h e  t h e o r y  o f  m i c r o - i n h o m o g e n e o u s  m e d i a  c o r r e s p o n d  t o  t h e  s e l f - c o n s i s t e n t  f i e l d  
method [5]. 

It is interesting to note that although K s are constants, the effective values K* in 
all of the models exhibit some dependence on the strain state of the composite. 
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MECHANICS OF FRACTURE OF COATINGS AND FILMS 

A. G. Cherepanov and G. P. Cherepanov UDC 539.375:621.01 

Introduction. The thin surface layer of any material has specific properties which 
can be attributed to interaction of the material with its environment. The nature of this 
interaction may be chemical, thermal, or physicomechanical in nature. As a rule, an initial 
fatigue crack is initiated in the surface layer of materials and structures, and the growth 
of this crack ultimately leads to exhaustion of the safe life of the structure or structural 
element. It is therefore natural that the condition of the surface layer (and the control 
of its properties) is one of the foremost problems currently occupying technologists and 
engineers [I, 2]. The efficient utilization of materials in industry depends in large part 
on the solution of this problem. 

The surface layer and the body of a material can be regarded together as a composite, 
one of the components of which is the surface layer [3]. The most important characteristics 
of this layer are its special protective properties, which depend on its chemical composi- 
tion and microstructure, the adhesive strength and crack resistance of the layer proper, and 
the contact of the layer with the substrate. The properties of the surface layer are af- 
fected by hydrogen and corrosion in gaseous media and aqueous solutions, wear, catalysis, 
welding and soldering, erosion, passivation, adhesion, sintering and ablation, and the 
presence of inhibitors. 

Various methods are used to control the mechanical, chemical, magnetic, electrical and 
other properties of the surface layer. These methods can be classified as follows. 

Mechanical Methods. This class of methods includes shot-blasting (to work-harden the 
surface), hammering, and impact strain-hardening. These methods produce high compressive 
residual stresses in the surface layer and retard crack nuclei in the layer. 

Lacquer Coating and Oxide Films. Lacquer coatings and oxide films serve as chemical 
protection for the material from the effects of the environment. 

Deposition Methods. Deposition methods make it possible to obtain new surface layers 
with a composition and microstructure different from the composition and microstructure of 
the substrate material. This class of methods includes plasma deposition, ion deposition, 
chemical and physical deposition from vapors, and electrolytic deposition. 

Methods of Chemico-Physical Modification. Methods of chemico-physical modification of 
a material make it possible to Change the mechanical and physicochemical properties of the 
surface layer. This class of methods includes special heat treatments, ion nitriding and 
cementation, ion implantation, and treatment with laser and electron beams. Under natural 
conditions, metal is usually protected by an oxide film. 
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